Skip to Main Content

Extended Essay: Group 5: Mathematics

Everything you need to know about the Extended Essay and more!

Mathematics

See Mathematics: Subject-specific guidance - Use tabs on the left under Mathematics: Subject Specific Guide for more information.

 

Overview

An extended essay (EE) in mathematics is intended for students who are writing on any topic that has a mathematical focus and it need not be confined to the theory of mathematics itself.

Essays in this group are divided into six categories:

  • the applicability of mathematics to solve both real and abstract problems
  • the beauty of mathematics—eg geometry or fractal theory
  • the elegance of mathematics in the proving of theorems—eg number theory
  • the history of mathematics: the origin and subsequent development of a branch of mathematics over a period of time, measured in tens, hundreds or thousands of years
  • the effect of technology on mathematics:
  • in forging links between different branches of mathematics,
  • or in bringing about a new branch of mathematics, or causing a particular branch to flourish.

These are just some of the many different ways that mathematics can be enjoyable or useful, or, as in many cases, both.

 

For an Introduction in a Mathematics EE look HERE

 

Choice of topic

The EE may be written on any topic that has a mathematical focus and it need not be confined to the theory of mathematics itself.

Students may choose mathematical topics from fields such as engineering, the sciences or the social sciences, as well as from mathematics itself.

Statistical analyses of experimental results taken from other subject areas are also acceptable, provided that they focus on the modeling process and discuss the limitations of the results; such essays should not include extensive non-mathematical detail.

A topic selected from the history of mathematics may also be appropriate, provided that a clear line of mathematical development is demonstrated. Concentration on the lives of, or personal rivalries between, mathematicians would be irrelevant and would not score highly on the assessment criteria.

It should be noted that the assessment criteria give credit for the nature of the investigation and for the extent that reasoned arguments are applied to an appropriate research question.

Students should avoid choosing a topic that gives rise to a trivial research question or one that is not sufficiently focused to allow appropriate treatment within the requirements of the EE.

Students will normally be expected either to extend their knowledge beyond that encountered in the Diploma Programme mathematics course they are studying or to apply techniques used in their mathematics course to modeling in an appropriately chosen topic.

However, it is very important to remember that it is an essay that is being written, not a research paper for a journal of advanced mathematics, and no result, however impressive, should be quoted without evidence of the student’s real understanding of it.

Example and Treatment of Topic

Examples of topics

These examples are just for guidance. Students must ensure their choice of topic is focused (left-hand column) rather than broad (right-hand column

 

Treatment of the topic

Whatever the title of the EE, students must apply good mathematical practice that is relevant to the

chosen topic, including:

• data analysed using appropriate techniques

• arguments correctly reasoned

• situations modeled using correct methodology

• problems clearly stated and techniques at the correct level of sophistication applied to their solution.

 

Research methods

Students must be advised that mathematical research is a long-term and open-ended exploration of a set of related mathematical problems that are based on personal observations. 

The answers to these problems connect to and build upon each other over time.

Students’ research should be guided by analysis of primary and secondary sources.

A primary source for research in mathematics involves:

• data-gathering

• visualization

• abstraction

• conjecturing

• proof.

A secondary source of research refers to a comprehensive review of scholarly work, including books, journal articles or essays in an edited collection.

A literature review for mathematics might not be as extensive as in other subjects, but students are expected to demonstrate their knowledge and understanding of the mathematics they are using in the context of the broader discipline, for example how the mathematics they are using has been applied before, or in a different area to the one they are investigating.

 

Writing the essay

Throughout the EE students should communicate mathematically:

• describing their way of thinking

• writing definitions and conjectures

• using symbols, theorems, graphs and diagrams

• justifying their conclusions.

There must be sufficient explanation and commentary throughout the essay to ensure that the reader does not lose sight of its purpose in a mass of mathematical symbols, formulae and analysis.

The unique disciplines of mathematics must be respected throughout. Relevant graphs and diagrams are often important and should be incorporated in the body of the essay, not relegated to an appendix.

However, lengthy printouts, tables of results and computer programs should not be allowed to interrupt the development of the essay, and should appear separately as footnotes or in an appendix. Proofs of key results may be included, but proofs of standard results should be either omitted or, if they illustrate an important point, included in an appendix.

 

Examples of topics, research questions and suggested approaches

Once students have identified their topic and written their research question, they can decide how to

research their answer. They may find it helpful to write a statement outlining their broad approach. These

examples are for guidance only.

An important note on “double-dipping”

Students must ensure that their EE does not duplicate other work they are submitting for the Diploma Programme. For example, students are not permitted to repeat any of the mathematics in their IA in their EE, or vice versa.

 

The mathematics EE and internal assessment

An EE in mathematics is not an extension of the internal assessment (IA) task. Students must ensure that they understand the differences between the two.

  • The EE is a more substantial piece of work that requires formal research
  • The IA is an exploration of an idea in mathematics.

It is not appropriate for a student to choose the same topic for an EE as the IA. There would be too much danger of duplication and it must therefore be discouraged.